skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Thursday, January 15 until 2:00 AM ET on Friday, January 16 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Krauth, Karl"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Droplet microfluidics enables kHz screening of picoliter samples at a fraction of the cost of other high-throughput approaches. However, generating stable droplets with desired characteristics typically requires labor-intensive empirical optimization of device designs and flow conditions that limit adoption to specialist labs. Here, we compile a comprehensive droplet dataset and use it to train machine learning models capable of accurately predicting device geometries and flow conditions required to generate stable aqueous-in-oil and oil-in-aqueous single and double emulsions from 15 to 250 μm at rates up to 12000 Hz for different fluids commonly used in life sciences. Blind predictions by our models for as-yet-unseen fluids, geometries, and device materials yield accurate results, establishing their generalizability. Finally, we generate an easy-to-use design automation tool that yield droplets within 3 μm (<8%) of the desired diameter, facilitating tailored droplet-based platforms and accelerating their utility in life sciences. 
    more » « less
  2. null (Ed.)
    Datacenter disaggregation provides numerous benefits to both the datacenter operator and the application designer. However switching from the server-centric model to a disaggregated model requires developing new programming abstractions that can achieve high performance while benefiting from the greater elasticity. To explore the limits of datacenter disaggregation, we study an application area that near-maximally benefits from current server-centric datacenters: dense linear algebra. We build NumPyWren, a system for linear algebra built on a disaggregated serverless programming model, and LAmbdaPACK, a companion domain-specific language designed for serverless execution of highly parallel linear algebra algorithms. We show that, for a number of linear algebra algorithms such as matrix multiply, singular value decomposition, Cholesky decomposition, and QR decomposition, NumPyWren's performance (completion time) is within a factor of 2 of optimized server-centric MPI implementations, and has up to 15% greater compute efficiency (total CPU-hours), while providing fault tolerance. 
    more » « less